On the Curve Complexity of Upward Planar Drawings

نویسنده

  • Franz-Josef Brandenburg
چکیده

We consider directed graphs with an upward planar drawing on the plane, the sphere, the standing and the rolling cylinders. In general, the drawings allow complex curves for the edges with many zig-zags and windings around the cylinder and the sphere. The drawings are simplified to polyline drawings with geodesics as straight segments and vertices and bends at grid points. On the standing cylinder the drawings have at most two bends per edge and no windings of edges around the cylinder. On the rolling cylinder edges may have one winding and five bends, and there are graphs where edges must wind. The drawings have a discrete description of linear size. The simplifications can be computed e ciently in O(⌧ n3) time, where ⌧ is the cost of computing the point of intersection of a curve and a horizontal line through a vertex. The time complexity does not depend on the description complexity of the drawing and its curves, but only on O(n3) sample points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Perspectives Opened by Right Angle Crossing Drawings

Right Angle Crossing (RAC) drawings are polyline drawings where each crossing forms four right angles. RAC drawings have been introduced because cognitive experiments provided evidence that increasing the number of crossings does not decrease the readability of a drawing if edges cross at right angles. We investigate to what extent RAC drawings can help in overcoming the limitations of widely a...

متن کامل

Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three

An upward planar drawing of a digraph G is a planar drawing of G where every edge is drawn as a simple curve monotone in the vertical direction. A digraph is upward planar if it has an embedding that admits an upward planar drawing. The problem of testing whether a digraph is upward planar is NP-complete. In this paper we give a linear-time algorithm to test the upward planarity of a series-par...

متن کامل

Upward Tree Drawings with Optimal

Rooted trees are usually drawn planar and upward, i.e., without crossings and without any parent placed below its child. In this paper we investigate the area requirement of planar upward drawings of rooted trees. We give tight upper and lower bounds on the area of various types of drawings, and provide linear-time algorithms for constructing optimal area drawings. Let T be a bounded-degree roo...

متن کامل

Planar upward tree drawings with optimal area

Rooted trees are usually drawn planar and upward i e without crossings and with out any parent placed below its child In this paper we investigate the area requirement of planar upward drawings of rooted trees We give tight upper and lower bounds on the area of various types of drawings and provide linear time algorithms for constructing optimal area drawings Let T be a bounded degree rooted tr...

متن کامل

Quasi - Upward Planarity ? ( Extended Abstract )

In this paper we introduce the quasi-upward planar drawing convention and give a polynomial time algorithm for computing a quasiupward planar drawing with the minimum number of bends within a given planar embedding. Further, we study the problem of computing quasi-upward planar drawings with the minimum number of bends of digraphs considering all the possible planar embeddings. The paper contai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012